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Abstract  

The peculiarities of the scalar S =-R~j~R~Jkz are exhibited for two axially-symmetric 
static (Weyt) gravitational fields. By examining S along curved families of trajectories to 
the Weyl singularities, examples are found which contradict previous claims by Gautreau 
and Anderson regarding 'directional singularities'. Proper circumferences about the Bach 
and Weyl line-mass singularity are also examined. There is no apparent correlation 
between the source structure and the behaviour of S from this analysis. 

1. Introduction 

The concept of  a singularity in general relativity has been a subject of  
much interest and debate over the years. The astrophysical interest in gravit- 
ational collapse and the nature of  the evolving cosmological models has 
lent new weight and purpose to the study of  singularities. The interest and 
concern has led a number of  investigators to seek clear-cut criteria for  
intrinsic singularities and to examine their properties. I t  may emerge that  
no single rule for singularities is possible and that one must look for one of  
several indicators. 

Perhaps the most  universal approach to locating intrinsic singularities 
in gravitational fields has been the search for infinities in the invariant 
scalars formed from combinations of  covariant elements of  the theory 
(Gautreau & Anderson, 1967). This approach has been criticised by Geroch 
(1968) on the grounds that the invariant tetrad components of  the Riemann 
tensor can be altered and in fact made infinite at will by the proper choice of  
tetrad. This criticism can be countered by questioning the status of  tetrad 
vectors as basic elements of  the theory. Moreover, one could argue that one 
should confine one's attention to scalars such as the Kretschmann scalar, 

S - R~jkz R ijkl (1.1) 

where Rtjkz is the Riemann tensor, which are invariant in every sense. 
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Since the Riemann tensor fundamentally characterises the gravitational 
field, it seems reasonable to say that if S becomes infinite, or indeed inde- 
terminate at some point or region in the space-time, then one has located 
an intrinsic singularity. However, the converse is not the case. An intrinsic 
singularity will be exhibited for which S is very well behaved. 

A few years ago, Gautreau & Anderson (1967) developed the concept 
of a 'directional singularity' noting that 'the singular behaviour of an in- 
variant scalar may not always unambiguously indicate the location of an 
intrinsic singularity of a gravitational field'. They showed that for the field 
of a Cnrzon (1924) particle, S-,--co for every straight line trajectory to the 
origin except along the z-axis where S--~0 'indicating that the origin is not 
the location of an intrinsic singularity. In other words, there appears to 
be a directionality associated with the "singularity" at the origin.' 

Evidently, the meaning which they wished to convey by their analysis was 
misconstrued by Bonnor & Sackfield (1968) who cited their work as evi- 
dence that scalar invariants need not become infinite at the location of 
intrinsic singularities. In a rejoinder, Gautreau & Hoffman (1969) affirmed 
that it is the infinities of the scalar invariants which locate the intrinsic 
singularities of a gravitational field! According to the proponents of the 
directional singularity concept, one does not meet an intrinsic singularity 
by coming to the origin in the direction of the z-axis but one does meet one 
for any other direction of approach. The question of the actual location of 
the intrinsic singularity is left in an aura of doubt. Perhaps that was the 
original intention. 

In this paper, we demonstrate that the concept of 'directionality' with 
regard to singularities has no foundation, thereby removing the intuitively 
disturbing proposal that one precise direction should have a completely 
distinct qualitative character from that of every other direction vis-/t-vis 
the character of the singularity. We also present a clear-cut example of an 
intrinsic singularity for which the scalar S is well-behaved in every sense in a 
region which has always been, justifiably, regarded as intrinsically singular. 

In Section 2, the Curzon particle singularity is re-examined. By evaluating 
the scalar S along power-law trajectories, an interesting set of possibilities 
is revealed. In particular, there is a range of trajectories which approach the 
Curzon particle via the z-axis direction and which yield an infinite limit for 
S rather than the zero limit by approaching along the z-axis (the r = 0 
trajectory). By the criterion of Gautreau and Anderson, one might be led 
to call the termination point in the z-axis direction both singular and non- 
singular. We feel that it is more reasonable to simply call it singular along 
with every other termination point. The field of two Curzon particles is 
also considered. 

In Section 3, the Weyl field generated by the Newtonian potential of a 
constant density line mass is examined. At the end point, the limiting value 
for S depends on the line density and trajectory. The proper circumferences 
are also evaluated. 

Concluding remarks follow in Section 4. 
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2. T h e  C u r z o n  P a r t i c l e  S i n g u l a r i t y  

Weyl (1937, 1919; see also Synge, 1960) showed that static, axially- 
symmetric gravitational fields can be expressed by the metric 

ds  z = e 2~ d t  z - e 2(v-z) (dr  z + d z  2) - r 2 e -22 dc~ 2 (2.1) 
where]" 

211 + 222 + 21/r  = 0 (2.2) 

vl = r(212 - 222), v2 = 2r21 )~2 (2.3) 

are the equations satisfied by 2 and v in vacuum. Equation (2.2) is precisely 
Laplace's equation in cylindrical polar coordinates and hence axially 
symmetric Newtonian fields can be used to generate general relativistic 
gravitational fields. There is a lack of correspondence, however. For ex- 
ample, the Newtonian potential of a spherically symmetric mass distribution 

m m 
2 . . . .  (2.4) 

p a / ( r  2 + z 2) 

generates the Curzon metric (1924) 

ds  2 = e -2m/° d t  2 - e (zm/p-"2r2/°4~ (dr  z + d z  z) - e 2m/° r 2 d~b 2 (2.5) 

which is not equivalent to the Schwarzschild solution, the unique static, 
spherically symmetric vacuum solution. 

Gautreau & Anderson (1967) computed the scalar S for the Curzon metric, 

[ 2 m [ m r Z - 2 ) ] { p o l y n o m i a l i n ; }  (2.6) S = exp [--~- k ~ -  

Since S-> co as p -+0 for every straight line trajectory except for an approach 
along the z-axis (r = 0) where S-+ 0, they concluded that the direction of the 
z-axis is somewhat special and hence the 'directional' concept. 

The situation is considerably more complicated than this (Cooperstock 
e t  a L ,  1972). The scalar S can just as readily be evaluated along curved 
trajectories. Consider the family of trajectories 

z = C r " ,  n > 0 (2.7) 

where, for simplicity, C is taken to be positive and z-+0+ to the origin. 
The results are tabulated in Table 1. 

From the standpoint of the trajectories 2/3 < n < 1, the direction of the 
z-axis is not very special at all in that the scalar S becomes infinite as the 
singularity is approached. Clearly, the value of the scalar depends on the 
trajectory as well as the direction which is attained. Moreover, for the criti- 
cal trajectory n = 2/'3, the scalar depends on the relationship between the 
mass of the Curzon particle and the trajectory parameter C. 

At this stage, it is reasonable to consider the true significance of the value 

t 1, 2, 3, denote  r, z, ~b respectively a n d  21 denotes  02 /Or ,  etc. G = e = 1. 
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TABLE 1. Limits for S in the Curzon metric 

Range S Direction as r--*0 

0 < n < 2 / 3  0 z-axis 

n = 2 / 3  C <  oo z-axis 

n = 2 / 3  C ~  0 z-axis 

2/3 < n < 1 ~o z-axis 
n = 1 r # 0 oo all directions other 

than the z-axis 
r = 0 (the z-axis 0 z-axis 

trajectory) 
n >  1 oo r-axis 

of S with regard to singularities. Clearly, one would want to call a point 
'singular' if  S were, in some way, infinite there. The suggestion of Gautreau 
and Anderson is that one should qualify the description if S should have 
'directional' properties. Implicit in their work is the conviction that the 
infinite value of S is not merely a sufficient condition but also a necessary 
condition for the existence of an intrinsic singularity. If  this were indeed the 
case, then the subtleties in the behaviour of S would be a subject worthy of 
considerable study. One would be motivated, by the foregoing results, to 
introduce the concept of a 'trajectory singularity' since the behaviour of S is 
trajectory dependent. However, the infinite value of S is not a necessary 
condition for an intrinsic singularity. This point has been stressed before 
(Rindler, 1969; Bonnor & Sack_field, 1968). 

A very straightforward example of this phenomenon is the field of two 
separated Curzon particles. The metric was derived by Silberstein (1936) 
and corrected by Einstein & Rosen (1936). The corrected metric has a line 
singularity between the two particles which plays the role of a strut, holding 
the particles at a fixed separation. However, the scalar Sis readily shown to be 
finite on this line and for every approach to this line which avoids the end 
points. 

3. Metric of Bach and Weyl 

Applying the Weyl formalism Bach & Weyl (1922; see also, Robertson 
& Noonan, 1968) derived the metric which is generated by the Newtonian 
potential of a constant density line mass, 

2 = ~/In R1 + R2 - 2l (3.1) 
R 1 q- .R 2 ~ 2l 
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where 
R12 = (z - l) 2 + r 2 

(3.2) 
R22 = ( z  + l )  2 + r 2 

/z is the mass o f  the line and 21 is its length in the Newtonian picture. The 
Weyl equations (2.3) yield 

l (#) 21n (Rl + R2)2-412 (3.3) 
v = ~ -] 4R1 R2 

Fo r  the special case 

the coordinate  t ransformat ion 

# - - - ~ = I  (3.4) 
l 

Rl+R2+2# 
P =  2 

(3.5) 
cos 0 - R2 - R1 

2~ 

casts the metric into the form of  the Schwarzschild solution 

ds2=(1-2~p ) d t 2 - ( 1 - ~ ) - l d p 2 -  p2(dO2 + sin2Od~b 2) (3.6) 

where the line - l  ~< z ~< l maps into the sphere p =  2p. 
Using differential forms (Israel, 1970) in conjunct ion with coordinates 

~, r/defined by 

R1 + R2 = 21 cosh 

Rz - R1 = 21 cos ~/ 
with basis 1-forms 

0, (tao  ) o = dt 

0 2 = l coth (sinh ~) °2 (sinh 2 ~ + sin 2 ~ ) -5 -  d~ 

0 a = l coth sinh ~)~2 (sinh2 ~ + sin2 t/) 2 dr/ 

0 4 = l coth ~ sinh ~ sin t /d~ 

the  Bach and Weyl  line element becomes 

(3.7) 

(3.8) 

ds 2 = (01) 2 - (02) 2 --(03) 2 - (04) 2 (3.9) 
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The frame components of the Riemann tensor RaBcD are given in the Appen- 
dix and the scalar S is 

S = R ABc° RAt~co 

= 4[(R12~2) 2 + (R12~3) 2 + (R~zx2) 2 
+ + + + 

+ (R3,24) 2 + (R3434) z] (3.10) 

S was evaluated for two straight line trajectories approaching the end 
point z =  l, r =  0: the z-axis trajectory r =  O, z-+l+ and the trajectory 
z = / ,  r-+0+. In both cases, S-+oo for 0 < ~ < 2 and S-+0 for ~ > 2 in 
agreement with Gautreau & Anderson (1967) and Gautreau (1969). 

The trajectories 
z -  l =  Cr" (3.11) 

were also considered. The results are given in Table 2. The peculiarity here 
exhibited by S is the onset of its infinity at ¢ = 3 for the power law trajec- 
tories which approach the z-axis direction, rather than at ~ = 2, as in the case 
of straight line z-axis approach. Gautreau (1969) refers to the non-existence 
of intrinsic singularities as the end points are approached for ~ > 2. How- 
ever, for 0 < n < 1, S becomes infinite as the end points are approached for 
2 < ~k < 3 and hence even the most daring would be inclined to call the 
singularity 'intrinsic" for this range. Indeed, by considering more general 
families of  trajectories, one can demonstrate that the ff range which yields 
an infinite value for S can be extended to include all ~ > 0 (except ~ = 1, 
the Schwarzschild case). 

TABLE 2. Limits for S in the metric 
of Bach and Weyl 

n s 

0 < n < l  0 < ~ k < 2  oo 
2 < @ < 3  oo 
3 < ~  0 

n > l  0 < @ < 2  oo 
2 < @  0 

The similarity between this metric and the Curzon metric is the possibility 
for S to be infinite or zero for trajectories which approach the z-axis direction. 
However the details are quite different. 

Gautreau (1969; see also, Stachel, 1968) postulated a correlation between 
the onset of  directional singularities and the structure of the source as inter- 
preted from the areas of equipotenial surfaces converging on the coordinate 
location of the rod. A perhaps more intuitive approach towards the de- 
termination of  structure is the measure of proper circumferences along the 
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'rod'. However, as in the case of the scalar S, one has the luxury of measuring 
the limiting values of circumferences along families of trajectories. The 
possibilities are even richer than one would imagine. 

The values of the proper circumference L for the different cases are given 
in the following table (Table 3). 

It is to be noted that the n > 1 trajectories to the end point yield the same 
limiting circumferences both for z-+l+ and z-+l_. However, for n < 1, the 
transition from zero to infinite circumferences occurs at ( 2 -  n)~h = 2 
for z-+l_ and at n¢ = 2 for z-+l+. 

Stachel (1968) considered proper circumferences in his analysis of the 
Curzon particle. In the case of the Curzon particle the onsets of non-zero 
equipotential area and non-zero circumference are coincident. In the case 
of the Bach and Weyl solution this coincidence no longer exists. The onset 
of non-zero equlpotential area is fixed at ~k = 2 whereas for n < 1 the value 
of ¢ for the onset of non-zero circumference is dependent on the trajectory. 
Indeed, the ~k-value can be pushed to ~ = 1 for z-+l_ in the limit n-+0. 

In the spirit of Gautreau and Stachel, one might be inclined to postulate 
a correlation between non-zero circumference and trajectory properties of a 
singularity by analogy with the postulated correlation between non-zero 
equipotential areas and directional singularities. This is particularly natural 
because the circumferences can be evaluated along the same trajectories 
as the scalar S. However, such a correlation is ruled out. As previously 
stated, it is possible to extend the range of ~ values for non-zero circumfer- 
ence to ~O = 1 whereas the line singularity exhibits no trajectory properties 
for ~h < 2. 

4. Concluding Remarks 

In this paper, we have demonstrated that the scalar S = R~jk~ R ~m, which 
is commonly used as a discriminator for intrinsic singularities in general 
relativistic fields has extremely varied properties in certain critical regions 
of two Weyl static axially symmetric fields. This great variability was 
achieved merely by changing from limits taken to the singular regions along 
straight line trajectories as in the works of Gautreau and Anderson, to 
simple power-law families of trajectories. In this manner, it was possible 
to find a counter-example to the 'directional' property attributed to the 
singularity of the Curzon particle. It was further demonstrated for the Bach 
and Weyl solution that the range of ~k-values for which S is infinite could be 
extended by considering power-law families of trajectories instead of straight 
line trajectories. It was indicated that this range could be extended to cover 
all q~ > 0 (ff # I) by consideration of more general trajectories. Moreover, 
the proper circumferences for the singular region of the line mass solution 
of  Bach and WeyI were evaluated along the power-law trajectories and the 
possibilities were shown to be equally varied and interesting (albeit peculiar). 

On the basis of these results, a correlation between non-zero proper 
circumference and trajectory dependence of the scalar S, was ruled out. 
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Whether or not the trajectory dependence of these quantities could be 
used to acquire important information about the singularities is an open 
question. 

Appendix 
The non-vanishing frame components of the Reimann tensor are 

~ sechZ~{-B csch ~ + C [ ~ c s c h 2 ~  - 1]} 
8122i ----- 2----'ff-- 

R~32~ = R~23~ = ~(¢z _ 1) sin 2q 
2D sinh 

R1313 - 

R 1414 

~B sech 2 

2D sinh 

CAC sech2 ~ 

2D sinh 

sech 2_~ 
2 

8 3 4 2 4  = 8 2 4 3 4  -= _ _  
4D 

[A (¢2 _ 1)sin 2t/+ 2(AC + B)cot q] 

83434 = [AB sech4 ~-F 4(1-tf/2)cos2q + 4C] 
4D 

(~2 _ 1) [C cos 2 t / -  ½ sin 2 2t/] 8 2 3 2 3  - -  CD 

+ ~ {2 cosh ~ - C csch 2~ + ¢ sin z q csch 2 ~ cosh ¢} 

Oz sin 2 q + [2 cosh 2 ~ + sinh 2 ~ -  cosh ~] 
D 

B sechZ~ [csch~ _ coth ~ sin~ 2¢] 

2D 

82424={Asech4~[(1-1p) Ccoth~-B] 

+ 4C[csch 2 ~(cosh ~ - ~) - 1] + 4(¢ 2 - 1) cos 2 q} 40  
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A = ~ csch2~ sinh ~ - c o t h ~ c o s h  ~ 

B = ( -  ~ csch2 ~ sinh ~ + ~/Z coth ~ cosh ~) C 

+ (1 - ~z) coth ~ sinh 2 ~ cosh 

C = sinh 2 ~ + sin z t/ 

( 7  ° 
D = l 2 coth  ~ (sinh ¢) 2o2 C 2-°2 
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